

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	uiro 0.2 documentation

Uiro framework documentation

le Web framework.

A simple Uiro application will be like this.

from wsgiref.simple_server import make_server
from matcha import Matching, make_wsgi_app
from uiro.controller import BaseController
from uiro.view import view_config

class Controller(BaseController):
 @view_config(method='get')
 def get_view(self, request, context):
 return 'Hello {name}!'.format(**request.matched_dict)

 matching = Matching('/hello/{name}', Controller())

if __name__ == '__main__':
 app = make_wsgi_app(matching)
 server = make_server('0.0.0.0', 8888, app)
 server.serve_forever()

And setup.

pip install uiro
python hello.py

Now, you can visit http://localhost:8888/hello/world in a browser, you will see the text ‘Hello world!’.

Next step

Above example is too tiny to create a common-sensible Web application.
On next step, you can create your first project through Starting your first package documentation.
In this doc, you can create an application package, not just for a example.

To learn more about Uiro browse these topics:

	Starting your first package
	Installing

	First project

	What files are in your package?

	Writing your views
	Testing views without decorators

	Responsibility of controllers

	Apply resources for views

	URL Dispatching
	Registering Controller

	Getting URL arguments from request

	Getting URL for each controllers

	Actually behavior

	Connectiong to RDBs using SQLAlchemy
	Creating your Model

	Create tables by initdb command

	Setting about database to use

	Using mako templates
	Easiest way, by view

	Simplest way

	Serving static files
	Getting URL for a static files

	Application configuration
	Uiro-limited configurations

	Uiro API reference
	uiro package

 Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	uiro 0.2 documentation

Starting your first package

Installing

Create your python env and install it from PyPI:

pip install uiro

First project

After installing Uiro, ‘gearbox’ command will be available on your env.
You can manage projects and applications by using this command.
Now let’s create your first Uiro package:

gearbox create -n packagename

Above ‘packagename’ string should be replaced to some another name you want.

And then install created package:

cd packagename
python setup.py develop

This action makes your created package available on your env.

Then create SQLite DB as a file named ‘default.db’ to current dir:

gearbox initdb

The setting for DB is written in development.ini, and some another
setting too, check it out.

Finally, you can serve your application, by serve command:

gearbox serve

Then, you can run your web browser and access to localhost with port 8888
to confirm automatically created package is running.

What files are in your package?

Your package must contain these packages:

.
├── packagename
│ ├── __init__.py
│ ├── views.py
│ ├── matching.py
│ ├── models.py
│ ├── templates
│ │ └── top.mako
│ └── static
│ └── uiro.css
├── development.ini
├── setup.py
├── README.rst
├── CHANGES.txt
└── MANIFEST.in

	views.py:	Module to store Controllers which bundles each Views.

See Writing your views documentation.

	matching.py:	Entry point for each Controllers, specifying which Controller should be called
corresponds to URL gave by clients.

See URL Dispatching documentation.

	models.py:	Module to store Models, which is abstraction layer for structuring and manipulating the database.
Uiro framework depends on SQLAlchemy [http://www.sqlalchemy.org/], you can write your own Models by SQLAlchemy [http://www.sqlalchemy.org/] more easily.

See Connectiong to RDBs using SQLAlchemy documentation.

	templates:	Directory to store mako templates.
Templates will be collected automatically.
The top.mako template can be picked up as a signature like ‘packagename:top.mako’.

See Using mako templates documentation.

	static:	Directory to store static files.
Static files will be also collected automatically and served, so you should not handle them manually.
The uiro.css file will be in /static/packagename/uiro.css, and the link can be generated, using request.matching.

See Serving static files documentation.

	development.ini:

		Configation file for WSGI application.
It specifies that which Matching to use, which Database to connect and so on.

See Application configuration documentation.

	setup.py:	Builder your package, which usually tells you that the module/package you are about
to install have been packaged and distributed.

See setuptools [http://pythonhosted.org/setuptools/] documentation.

	MANIFEST.in:	File to specify which file should be contained in package.

	CHANGES.txt:	Text file to describe your package’s change logs.

	README.rst:	README file for your package.

 Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	uiro 0.2 documentation

Writing your views

“Views” are methods to encapsulate the logic responsible for...:

	Processing a user’s request and context determined data by request.

	Returning the response, such as response object, dictionary or string.

Commonly views will look like this:

from uiro.controller import BaseController
from uiro.view import view_config

class MyController(BaseController):
 @view_config(method='get')
 def get_view(self, request, context):
 return 'Hello world!'

This MyController class is WSGI application returns response containing text ‘Hello world!’ in it’s body.

	Controller is a WSGI application.

	view_config is decorator to construct methods as view.

Views are logic about interfaces. Storing business logic in views is not recommended.

Testing views without decorators

On Unit testing, you should test target logic without any other things.
View methods must be applied view_config decorator, so It seems that it is difficult to test views
without any decorators.

Don’t worry, Uiro provide a feature allowing you to write tests without decorators.
You can test views like this:

>>> target = MyController().get_view
>>> assert target('dummy_request', 'dummy_context') == 'Hello world!'

Responsibility of controllers

Constructing a WSGI application from views. It checks which view should be called and dispatching.
You don’t need to write any logic for controllers. All of them have been determined by Uiro framework.
It is only used as a container for views like above example.

You can change logic in controller, specifying some values to interface provided by it’s own.
The best example of this is resource, it is object to some resources on app determined by a request.
For more detail, see Apply resources for views.

Note

The number of APIs provided by Controllers should be as little as possible.
Uiro should not force users to remember a lot of APIs. it will be labor for users and generally
it will be difficult to use. and what is worth, changing APIs may be hard work so Uiro will become
inflexible increasingly.

Apply resources for views

For many cases, necessary data for one view can be determined by only a request.
And It should be separate from views, to increase testability and readability:

	Separating logic to collect data form views.

	Allowing to dispatch views corresponding to collected data in context.

It will be applied request object and you can write logic to collect data in it.
It can be specified resource attribute in your Controller. A controller apply request
to class in resource attribute and pass it to each view methods.

You can use this behavior like this:

from .models import Page

class PageResource(object):
 def __init__(self, request):
 self.request = request

 @property
 def page(self):
 return Page.query.filter_by(id=request.matched_dict['id']).one()

class Controller(BaseController):
 resource = PageResource

 @view_config(method='get'):
 def get_view(request, context):
 return {'page': context.page}

Hereby, you separated collection logic and view (user interface).
When you test each views, you can pass dummy request and context easily. you can focus writing tests
for about interfaces.

Note

It’s better to store resource classes in a separated module to correspond to each models.
Above example, The PageResource class in page.py seems better. Then of cause, you will store another
logic for the Page model in page.py too.

 Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	uiro 0.2 documentation

URL Dispatching

Registering Controller

You can write dispatcher in yourpacake/matching.py like this:

from matcha import Matching as m, bundle
from .views import DashbordController, PageController

matching = bundle(
 m('/', DashbordController(), name='dashbord'),
 m('/page/{slug}', PageController(), name='page'),
)

Then, client accessing:

	localhost/:	DashboardController will be dispatched

	localhost/page/hello_word:

		PageController will be dispatched

	localhost/page/about_ritsu:

		also PageController will be dispatched

Uiro is using matcha [https://pypi.python.org/pypi/matcha] dispatcher.
For more details about dispatching, watch matcha [https://pypi.python.org/pypi/matcha] documentation.

Getting URL arguments from request

When accessing ‘/page/hello_word’, you can that ‘slug’ value in your views.

>>> # In your views
>>> request.matched_dict['slug']
'hello_world'

Getting URL for each controllers

request.matching.reverse('page', slug='hello_world')

request.matching is actually same value with matching object constructed by above example.
Uiro watches matching object and call controllers, then it assigns taken matching object to
request object.

Actually behavior

To choice which Controller should be called, Uiro is using matcha [https://pypi.python.org/pypi/matcha] dispatcher.
Uiro will automatically construct application from a matching object of matcha [https://pypi.python.org/pypi/matcha]
specified by configuration .ini file.

In .ini file, the uiro.root_matching is key to specify core matching object
for your application. the value should be splittable by colon (‘:’), then, the left value
is path to module to store your root matching object, and the right value is it’s name.

If you write a setting like this:

uiro.root_matching = path.to.yourmodule:matchingobject

follow matching object will be used as root matching to construct your application.

In path.to.yourmodule module.
matchingobject = Matching('/', SomeWSGIApp())

Constructed application will call SomeWSGIApp when the PATH_INFO is ‘/’.

 Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	uiro 0.2 documentation

Connectiong to RDBs using SQLAlchemy

Uiro depends on SQLAlchemy [http://www.sqlalchemy.org/], a powerful ORM for python.
It only provides these features:

	Base class and Session for SQLAlchemy [http://www.sqlalchemy.org/] to write models

	Specifying zope.sqlalchemy [https://pypi.python.org/pypi/zope.sqlalchemy] extention

	A command to create tables

	Setting about database by .ini file

Creating your Model

It’s same with SQLAlchemy [http://www.sqlalchemy.org/].
Just using Base/Session provided by Uiro to creating tables automatically.

import sqlalchemy as sa
from uiro.db import Base, Session

class MyModel(Base):
 __tablename__ = 'mymodel'
 query = Session.query_property()

 id = sa.Column(sa.Integer, primary_key=True)
 name = sa.Column(sa.String(255))

 def __init__(self, name):
 self.name = name

And using like this:

>>> import transaction
>>> with transaction.manager:
... Session.add(MyModel(name='spam'))

You can see SQLAlchemy [http://www.sqlalchemy.org/] and zope.sqlalchemy [https://pypi.python.org/pypi/zope.sqlalchemy]
documentation to learn more.

Create tables by initdb command

You can initialize DB with following gearbox command:

gearbox initdb

This command is to create tables to specified database.

Setting about database to use

To change database to use, specify that URL to sqlalchemy.url setting in .ini file:

sqlalchemy.url = sqlite:///default.db

 Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	uiro 0.2 documentation

Using mako templates

Uiro depends on mako [http://www.makotemplates.org/] template, and provide some shortcuts to use templates
for applications.
Templates for an application should store in yourpackage/templates directory.
Uiro will collect templates and correlate the app and templates.

You learn how to use shortcuts here, but not about mako [http://www.makotemplates.org/] template
usage. you should see mako [http://www.makotemplates.org/] documentation and learn about it.

Easiest way, by view

Most easiest way to get and render a template is specifying
it by view_config, like this.

@view_config(method='get',
 template_name='blog:entry.mako')
def get_view(self, request, context):
 entry = context['blog_entry']
 return {'entry': entry}

If views return a dictionary, view_config will handle
it as context dictionary for a template specified by template_name.
view_config will render it and use it as Response body.

You can specify a template by passing a template name
that is string splittable by a colon.
The left value is package name,
and the right value is template name, like ‘blog:entry.mako’.

The template used in above example must be here:

blog/templates/entry.mako

It was collected automatically, so you can use it only specifying
the signature.

Simplest way

You can get template by a getter function
uiro.template.get_template.
It simply returns mako [http://www.makotemplates.org/] template object, so you can
render it by .render method.

from uiro.template import get_template
get_template('blog:entry.mako').render(entry='blog entry')

 Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	uiro 0.2 documentation

Serving static files

Uiro prepares a feature to collect static files and serve it.
It will collect static files as same way for templates
(Using mako templates).

It will create an app for serving static files and register
in in URL dispatcher.
Static files will be collected from directory named ‘static’
under your application:

./blog/static/

This example is with an application named blog.
URLs for static files in static directory will begin with
/static/app_name/. so in blog app case, if the directory has
css/main.css file, the file will be published like this:

yoursite.com/static/blog/css/main.css

Getting URL for a static files

You can get this URL by reversing form matching object

request.matching.reverse('blog:static', path=['css', 'main.css'])

 Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	uiro 0.2 documentation

Application configuration

In this documentation, sometime you may write same configurations
to .ini file.

Uiro-limited configurations

	uiro.root_matching:

		Specifying which object to use as root matching to
construct URL dispatcher.

	uiro.installed_apps:

		Uiro packages to initialize, collecting templates, static files,
DBs and so on.

More about detail, you see PasteDeploy [http://pythonpaste.org/deploy/] documentation and learn.

 Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	uiro 0.2 documentation

Uiro API reference

package API reference.

	uiro package
	Subpackages
	uiro.commands package
	uiro.commands.initdb module

	uiro.commands.shell module

	uiro.commands.create module

	Module contents

	uiro.controller module

	uiro.db module

	uiro.request module

	uiro.static module

	uiro.template module

	uiro.view module

	Module contents

 Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	uiro 0.2 documentation

 	Uiro API reference

uiro package

Subpackages

	uiro.commands package
	uiro.commands.initdb module

	uiro.commands.shell module

	uiro.commands.create module

	Module contents

uiro.controller module

	
class uiro.controller.BaseController

	Bases: builtins.object

Base WSGI application class to handle Views.

Controllers try to call methods wrapped by uiro.view.view_config.
But actually it will call _wrapped attribute of each Views:

	Original View methods can be called without any decorators.
This behavior is provided for ensuring depending-less tests.

	When wrapped View raised ViewNotMatched, it will try next one.

	All of views are not matched, it will return 404 response.

You can inherit this class and register views. Then, decorate views
with uiro.view.view_config to apply configation to each views,
such as witch views will be call or witch template to use.

class DashboardController(BaseController):
 @view_config(method='get')
 def get_view(self, request):
 return "Hello guys"

 @view_config(method='post')
 def post_view(self, request):
 return "Posted something"

Check the behavior of view_config for more detail.

	
resource(s, x)

	

	
views = []

	

	
class uiro.controller.ControllerMetaClass

	Bases: builtins.type

	
exception uiro.controller.NotFound

	Bases: builtins.Exception

Error for notifying the resource was not found.

uiro.db module

	
uiro.db.initdb(config)

	Initializing database settings by using config from .ini file.

uiro.request module

	
class uiro.request.Request(environ, charset=None, unicode_errors=None, decode_param_names=None, **kw)

	Bases: webob.request.BaseRequest

	
matched_dict

	

	
matching

	

uiro.static module

	
uiro.static.generate_static_matching(app, directory_serve_app=<class 'webob.static.DirectoryApp'>)

	Creating a matching for WSGI application to serve static files
for passed app.

Static files will be collected from directory named ‘static’
under passed application:

./blog/static/

This example is with an application named blog.
URLs for static files in static directory will begin with
/static/app_name/. so in blog app case, if the directory has
css/main.css file, the file will be published like this:

yoursite.com/static/blog/css/main.css

And you can get this URL by reversing form matching object:

matching.reverse('blog:static', path=['css', 'main.css'])

	
uiro.static.get_static_app_matching(apps)

	Returning a matching containing applications to serve static files
correspond to each passed applications.

uiro.template module

	
uiro.template.get_app_template(name)

	Getter function of templates for each applications.

Argument name will be interpreted as colon separated, the left value
means application name, right value means a template name.

get_app_template(‘blog:dashboarb.mako’)

It will return a template for dashboard page of blog application.

	
uiro.template.get_lookups()

	Returning the lookups

The global variable _lookups should not be imported directory
by another modules. By importing directory, the value will not
change evenif setup_lookup

	
uiro.template.setup_lookup(apps, lookup_class=<class 'mako.lookup.TemplateLookup'>)

	Registering template directories of apps to Lookup.

Lookups will be set up as dictionary, app name
as key and lookup for this app will be it’s value.
Each lookups is correspond to each template directories of apps._lookups.
The directory should be named ‘templates’, and put under app directory.

uiro.view module

	
class uiro.view.MethodPredicate(method)

	Bases: builtins.object

Predicate class to checking Method of request object.

MethodPredicate is preserve views when the request method was not same with
applied in instantiate.

	
exception uiro.view.ViewNotMatched

	Bases: builtins.Exception

Called view was not apposite.
This exception is to notify Controllers that called view was not apposite
to the applied rquest.

	
uiro.view.get_base_wrappers(method='get', template_name='', predicates=(), wrappers=())

	basic View Wrappers used by view_config.

	
uiro.view.preserve_view(*predicates)

	Raising ViewNotMatched when applied request was not apposite.

preserve_view calls all Predicates and when return values of them was
all True it will call a wrapped view.
It raises ViewNotMatched if this is not the case.

Predicates:
This decorator takes Predicates one or more, Predicate is callable
to return True or False in response to inputted request.
If the request was apposite it should return True.

	
uiro.view.render_template(template_name, template_getter=<function get_app_template at 0x7f849d752d40>)

	Decorator to specify which template to use for Wrapped Views.

It will return string rendered by specified template and
returned dictionary from wrapped views as a context for template.
The returned value was not dictionary, it does nothing,
just returns the result.

	
uiro.view.view_config(method='get', template_name='', predicates=(), wrappers=(), base_wrappers_getter=<function get_base_wrappers at 0x7f849d2d28c0>)

	Creating Views applied some configurations
and store it to _wrapped attribute on each Views.

	_wrapped expects to be called by Controller
(subclasses of uiro.controller.BaseController)

	The original view will not be affected by this decorator.

Module contents

	
uiro.import_module_attribute(path, splitter=':')

	

	
uiro.main(global_conf, root, **settings)

	Entry point to create Uiro application.

Setup all of necessary things:

	Getting root matching

	Initializing DB connection

	Initializing Template Lookups

	Collecting installed applications

	Creating apps for serving static files

and will create/return Uiro application.

 Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	uiro 0.2 documentation

 	Uiro API reference

 	uiro package

uiro.commands package

uiro.commands.initdb module

	
class uiro.commands.initdb.InitDBCommand(app, app_args)

	Bases: uiro.commands.LoadAppCommand

Creating database tables.

	
take_action(self, parsed_args)

	

uiro.commands.shell module

	
class uiro.commands.shell.ShellCommand(app, app_args)

	Bases: uiro.commands.LoadAppCommand

Running python shell after building up an uiro application.

	
make_default_shell(self, interact=<function interact at 0x7f849e11a9e0>)

	

	
take_action(self, parsed_args)

	

uiro.commands.create module

	
class uiro.commands.create.command.CreateCommand(app, app_args)

	Bases: gearbox.command.TemplateCommand

	
CLEAN_PACKAGE_NAME_RE = <_sre.SRE_Pattern object at 0x7f849d0de3a8>

	

	
get_description(self)

	

	
get_parser(self, prog_name)

	

	
take_action(self, opts)

	

Module contents

	
class uiro.commands.LoadAppCommand(app, app_args)

	Bases: gearbox.command.Command

Base class for creating uiro commands.

You can override this class and call loadadd method to get
WSGI application built by paste.app_factory.
While building the application, almost necessary setup will be done
(for example setup databases, template lookups and so on), so then
you can run some application-dependent scripts

	
get_parser(self, prog_name)

	

	
loadapp(self, parsed_args)

	

 Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	uiro 0.2 documentation

 Python Module Index

 u

 			

 		
 u	

 	[image: -]
 	
 uiro	

 	
 	
 uiro.commands	

 	
 	
 uiro.commands.initdb	

 	
 	
 uiro.commands.shell	

 	
 	
 uiro.controller	

 	
 	
 uiro.db	

 	
 	
 uiro.request	

 	
 	
 uiro.static	

 	
 	
 uiro.template	

 	
 	
 uiro.view	

 Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	uiro 0.2 documentation

Index

 B
 | C
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | U
 | V

B

 	

 	BaseController (class in uiro.controller)

 	

 	BaseController.resource() (in module uiro.controller)

C

 	

 	CLEAN_PACKAGE_NAME_RE (uiro.commands.create.command.CreateCommand attribute)

 	ControllerMetaClass (class in uiro.controller)

 	CreateCommand (class in uiro.commands.create.command)

 	

 	CreateCommand.get_description() (in module uiro.commands.create.command)

 	CreateCommand.get_parser() (in module uiro.commands.create.command)

 	CreateCommand.take_action() (in module uiro.commands.create.command)

G

 	

 	generate_static_matching() (in module uiro.static)

 	get_app_template() (in module uiro.template)

 	get_base_wrappers() (in module uiro.view)

 	

 	get_lookups() (in module uiro.template)

 	get_static_app_matching() (in module uiro.static)

I

 	

 	import_module_attribute() (in module uiro)

 	initdb() (in module uiro.db)

 	

 	InitDBCommand (class in uiro.commands.initdb)

 	InitDBCommand.take_action() (in module uiro.commands.initdb)

L

 	

 	LoadAppCommand (class in uiro.commands)

 	LoadAppCommand.get_parser() (in module uiro.commands)

 	

 	LoadAppCommand.loadapp() (in module uiro.commands)

M

 	

 	main() (in module uiro)

 	matched_dict (uiro.request.Request attribute)

 	

 	matching (uiro.request.Request attribute)

 	MethodPredicate (class in uiro.view)

N

 	

 	NotFound

P

 	

 	preserve_view() (in module uiro.view)

R

 	

 	render_template() (in module uiro.view)

 	

 	Request (class in uiro.request)

S

 	

 	setup_lookup() (in module uiro.template)

 	ShellCommand (class in uiro.commands.shell)

 	

 	ShellCommand.make_default_shell() (in module uiro.commands.shell)

 	ShellCommand.take_action() (in module uiro.commands.shell)

U

 	

 	uiro (module)

 	uiro.commands (module)

 	uiro.commands.initdb (module)

 	uiro.commands.shell (module)

 	uiro.controller (module)

 	

 	uiro.db (module)

 	uiro.request (module)

 	uiro.static (module)

 	uiro.template (module)

 	uiro.view (module)

V

 	

 	view_config() (in module uiro.view)

 	ViewNotMatched

 	

 	views (uiro.controller.BaseController attribute)

 Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		uiro 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Hiroki KIYOHARA.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

